Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17348, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597329

RESUMO

Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.

2.
Mol Ecol ; : e17326, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515231

RESUMO

Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.

3.
Heredity (Edinb) ; 132(3): 142-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291272

RESUMO

Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.


Assuntos
Borboletas , Diapausa de Inseto , Diapausa , Animais , Diapausa de Inseto/fisiologia , DNA Recombinante/metabolismo , Borboletas/genética , Adaptação Fisiológica
4.
Evolution ; 77(2): 519-533, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625474

RESUMO

In this study, we investigated whether patterns of gene expression in larvae feeding on different plants can explain important aspects of the evolution of insect-plant associations, such as phylogenetic conservatism of host use and re-colonization of ancestral hosts that have been lost from the host repertoire. To this end, we performed a phylogenetically informed study comparing the transcriptomes of 4 nymphalid butterfly species in Polygonia and the closely related genus Nymphalis. Larvae were reared on Urtica dioica, Salix spp., and Ribes spp. Plant-specific gene expression was found to be similar across butterfly species, even in the case of host plants that are no longer used by two of the butterfly species. These results suggest that plant-specific transcriptomes can be robust over evolutionary time. We propose that adaptations to particular larval food plants can profitably be understood as an evolved set of modules of co-expressed genes, promoting conservatism in host use and facilitating re-colonization. Moreover, we speculate that the degree of overlap between plant-specific transcriptomes may correlate with the strength of trade-offs between plants as resources and hence to the probability of colonizing hosts and complete host shifts.


Assuntos
Borboletas , Transcriptoma , Animais , Larva/genética , Filogenia , Borboletas/genética , Aclimatação
5.
Evolution ; 76(11): 2634-2648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111364

RESUMO

Introductions of novel plant species can disturb the historical resource environment of herbivorous insects, resulting in strong selection to either adopt or exclude the novel host. However, an adaptive response depends on heritable genetic variation for preference or performance within the targeted herbivore population, and it is unclear how heritability of host-use preference may differ between novel and historical hosts. Pieris macdunnoughii butterflies in the Rocky Mountains lay eggs on the nonnative mustard Thlaspi arvense, which is lethal to their offspring. Heritability analyses revealed considerable sex-linked additive genetic variation in host preference within a population of this butterfly. This was contrary to general predictions about the genetic basis of preference variation, which are hypothesized to be sex linked between populations but autosomal within populations. Evidence of sex linkage disappeared when butterflies were tested on methanol-based chemical extracts, suggesting these chemicals in isolation may not be the primary driver of female choice among available host plants. Although unexpected, evidence for within-population sex-linked genetic variation in preference for T. arvense over native hosts indicates that persistent maladaptive oviposition on this lethal plant must be maintained by alternative evolutionary dynamics such as migration- or drift-selection balance or pleiotropic constraints.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Larva/fisiologia , Oviposição/fisiologia , Herbivoria , Evolução Biológica
6.
Nat Commun ; 13(1): 755, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136048

RESUMO

Seasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change. Between seasonal morphs, we find that differential splicing affects a smaller but functionally unique set of genes compared to differential expression. Further, we find strong support for the novel hypothesis that spliced genes are more susceptible than differentially expressed genes to erosion of genetic variation due to selection on seasonal plasticity. Our results suggest that splicing plasticity is especially likely to experience genetic constraints that could affect the potential of wild populations to respond to rapidly changing environments.


Assuntos
Adaptação Fisiológica/genética , Processamento Alternativo , Borboletas/fisiologia , Genes de Insetos/genética , Estágios do Ciclo de Vida/genética , Animais , Evolução Biológica , Feminino , Variação Genética , Modelos Genéticos , Estações do Ano , Transcrição Gênica
7.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34282459

RESUMO

The painted lady butterfly, Vanessa cardui, has the longest migration routes, the widest hostplant diversity, and one of the most complex wing patterns of any insect. Due to minimal culturing requirements, easily characterized wing pattern elements, and technical feasibility of CRISPR/Cas9 genome editing, V. cardui is emerging as a functional genomics model for diverse research programs. Here, we report a high-quality, annotated genome assembly of the V. cardui genome, generated using 84× coverage of PacBio long-read data, which we assembled into 205 contigs with a total length of 425.4 Mb (N50 = 10.3 Mb). The genome was very complete (single-copy complete Benchmarking Universal Single-Copy Orthologs [BUSCO] 97%), with contigs assembled into presumptive chromosomes using synteny analyses. Our annotation used embryonic, larval, and pupal transcriptomes, and 20 transcriptomes across five different wing developmental stages. Gene annotations showed a high level of accuracy and completeness, with 14,437 predicted protein-coding genes. This annotated genome assembly constitutes an important resource for diverse functional genomic studies ranging from the developmental genetic basis of butterfly color pattern, to coevolution with diverse hostplants.


Assuntos
Borboletas , Animais , Borboletas/genética , Genoma , Genômica , Humanos , Anotação de Sequência Molecular , Transcriptoma
8.
Genome Biol Evol ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33749729

RESUMO

The comma butterfly (Polygonia c-album, Nymphalidae, Lepidoptera) is a model insect species, most notably in the study of phenotypic plasticity and plant-insect coevolutionary interactions. In order to facilitate the integration of genomic tools with a diverse body of ecological and evolutionary research, we assembled the genome of a Swedish comma using 10X sequencing, scaffolding with matepair data, genome polishing, and assignment to linkage groups using a high-density linkage map. The resulting genome is 373 Mb in size, with a scaffold N50 of 11.7 Mb and contig N50 of 11,2Mb. The genome contained 90.1% of single-copy Lepidopteran orthologs in a BUSCO analysis of 5,286 genes. A total of 21,004 gene-models were annotated on the genome using RNA-Seq data from larval and adult tissue in combination with proteins from the Arthropoda database, resulting in a high-quality annotation for which functional annotations were generated. We further documented the quality of the chromosomal assembly via synteny assessment with Melitaea cinxia. The resulting annotated, chromosome-level genome will provide an important resource for investigating coevolutionary dynamics and comparative analyses in Lepidoptera.


Assuntos
Borboletas/genética , Animais , Borboletas/classificação , Mapeamento Cromossômico , Cromossomos , Genoma de Inseto , Anotação de Sequência Molecular
9.
Genome Biol Evol ; 13(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739414

RESUMO

We report a chromosome-level assembly for Pieris macdunnoughii, a North American butterfly whose involvement in an evolutionary trap imposed by an invasive Eurasian mustard has made it an emerging model system for studying maladaptation in plant-insect interactions. Assembled using nearly 100× coverage of Oxford Nanopore long reads, the contig-level assembly comprised 106 contigs totaling 316,549,294 bases, with an N50 of 5.2 Mb. We polished the assembly with PoolSeq Illumina short-read data, demonstrating for the first time the comparable performance of individual and pooled short reads as polishing data sets. Extensive synteny between the reported contig-level assembly and a published, chromosome-level assembly of the European butterfly Pieris napi allowed us to generate a pseudochromosomal assembly of 47 contigs, placing 91.1% of our 317 Mb genome into a chromosomal framework. Additionally, we found support for a Z chromosome arrangement in P. napi, showing that the fusion event leading to this rearrangement predates the split between European and North American lineages of Pieris butterflies. This genome assembly and its functional annotation lay the groundwork for future research into the genetic basis of adaptive and maladaptive egg-laying behavior by P. macdunnoughii, contributing to our understanding of the susceptibility and responses of insects to evolutionary traps.


Assuntos
Borboletas/genética , Cromossomos Sexuais , Animais , Mapeamento de Sequências Contíguas , Evolução Molecular , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...